Liver X receptor alpha

(Redirected from LXRα)

Liver X receptor alpha (LXR-alpha) is a nuclear receptor protein that in humans is encoded by the NR1H3 gene (nuclear receptor subfamily 1, group H, member 3).[5][6]

NR1H3
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesNR1H3, LXR-a, LXRA, RLD-1, Liver X receptor alpha, nuclear receptor subfamily 1 group H member 3
External IDsOMIM: 602423; MGI: 1352462; HomoloGene: 21165; GeneCards: NR1H3; OMA:NR1H3 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001130101
NM_001130102
NM_001251934
NM_001251935
NM_005693

NM_001177730
NM_013839
NM_001355279

RefSeq (protein)

NP_001171201
NP_038867
NP_001342208

Location (UCSC)Chr 11: 47.25 – 47.27 MbChr 2: 91.01 – 91.03 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Expression

edit

miRNA hsa-miR-613 autoregulates the human LXRα gene by targeting the endogenous LXRα through its specific miRNA response element (613MRE) within the LXRα 3′-untranslated region. LXRα autoregulates its own suppression via induction of SREBP1c which upregulates miRNA has-miR-613.[7]

Function

edit

The liver X receptors, LXRα (this protein) and LXRβ, form a subfamily of the nuclear receptor superfamily and are key regulators of macrophage function, controlling transcriptional programs involved in lipid homeostasis and inflammation. Additionally, they play an important role in the local activation of thyroid hormones via deiodinases.[8] The inducible LXRα is highly expressed in liver, adrenal gland, intestine, adipose tissue, macrophages, lung, and kidney, whereas LXRβ is ubiquitously expressed. Ligand-activated LXRs form obligate heterodimers with retinoid X receptors (RXRs) and regulate expression of target genes containing LXR response elements.[9][10] Restoration of LXR-alpha expression/function within a psoriatic lesion may help to switch the transition from psoriatic to symptomless skin.[11]

Interactions

edit

Liver X receptor alpha has been shown to interact with EDF1[12] and small heterodimer partner.[13] LXRα activates the transcription factor SREBP-1c, resulting in lipogenesis.[14]

edit

In 2016, a study found 70% of individuals in two families with a rare form of rapidly progressing multiple sclerosis had a mutation in NR1H3.[15] However, an analysis from The International Multiple Sclerosis Genetics Consortium using a 13-fold larger sample size could not find any evidence that the mutation in question (p.Arg415Gln) associated with multiple sclerosis, refuting these findings.[16]

References

edit

Further reading

edit
edit

This article incorporates text from the United States National Library of Medicine, which is in the public domain.